

Foteini Orfanou, Eleni Vlahogianni and George Yannis Department of Transportation Planning and Engineering National Technical University of Athens, Greece forfanou; elenivl; geyannis@central.ntua.gr

# A methodological framework from data collection to impact assessment of autonomous vehicles





 Autonomous vehicles will change future transportation systems and mobility patterns

SUMMER

SCHOOL

2020

- Penetration rate depends on:
  - Impact on traffic, user oriented and environmental aspects
  - Levels of public acceptance

### **Scope of Work**

- Methodological Framework for:
  - Modelling acceptance
  - Impact assessment of AVs





#### Impact Assessment

| KPIs for Safety                                                        | Stability of lateral and longitudinal position - (X, Y, Z)                     | Punctuality                                                                                               | Total time spent travelling<br>(min, h)            | Congestion phenomena, traffic oscillations (reduction of stop - |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|
| Crash probability                                                      | Accident Occurrence                                                            | Passenger waiting time (min)                                                                              | Route choice                                       | Changes in Macroscopic<br>Fundamental Diagrams (MFDs)           |
| Extreme maneuvers (harsh<br>braking, max<br>acceleration/deceleration) | AV reaction time and response<br>to incidents and rear crash<br>situations (s) | KPIs for Vehicle<br>Performance                                                                           | KPIs for Traffic/Network<br>Performance            | LOS                                                             |
| Brake intensity (m/s^2)                                                | Clearance time of the queue<br>(s,min)                                         | Number of emergency decelerations per 1000km,                                                             | Traffic flow homogenization                        | KPIs for Junction<br>Performance                                |
| Traffic violations (very low values of headway) -(m)                   | KPIs for Public Transport<br>Performance                                       | Mean and minimum time-<br>headway to the preceding<br>vehicle in front in car following<br>situations (s) | Harmonic average speed<br>(km/h)                   | Average delay (min, s)                                          |
| Traffic violations (speeding) -<br>(km/h)                              | Travel speed (km/h)                                                            | Minimum accepted gap at<br>intersections or in lane<br>changes (m)                                        | Average delay (min, s)                             | Through traffic (veh)                                           |
| TTC (s)                                                                | Travel time (min)                                                              | Mean and minimum distance<br>(m) to the preceding vehicle<br>(headway 5 s or less)                        | Number of stops                                    | KPIs for Environment                                            |
| PET (s)                                                                | Cost -per-vehicle kilometer                                                    | KPIs for Personal Mobility<br>and Travel Behavior                                                         | Maximum road capacity<br>(veh/h)                   | Tailpipe emissions (CO, NOx,<br>CO2) (kg)                       |
| Range of<br>acceleration/deceleration<br>(m/s^2)                       | Delays (min)                                                                   | Perception of travel time                                                                                 | Capacity at design speed<br>(veh/h)                | Energy consumption (kWh)                                        |
| Crash occurrence/crash                                                 | LOS                                                                            | Mode share/Mode choice                                                                                    | Average travel time on specific segments or routes | Fuel consumption (mpg)                                          |

Fig. 1. Flow Diagram of the methodological framework

## **Data Collection**

- Real world data collected
  from test vehicles
  Data B
  Data B
  Data B
  Data C
- Data collected from user surveys

# Modelling

A. Statistical Modelling

B. Behavioral Models

SERVER

|                        |                         |                               | (min)          |                          |
|------------------------|-------------------------|-------------------------------|----------------|--------------------------|
| Number of lane changes | Dwell time (s)          | Total distance travelled (km) | Speed profiles | Other GHG emissions (kg) |
| Number of crashes      | Vehicle occupancy rates |                               |                |                          |

# Conclusion

- Various dependencies between service goals and specifications
- Complexity of autonomous service influences all steps, chosen techniques and modeling needs
- Holistic approach is necessary
- Different AV behavioral models may need to be developed

#### Acknowledgements

Drive2theFuture project (Needs, wants and behavior of "Drivers" and automated vehicle users today and

- Confirmatory Factor Analysis (CFA)
- Technology Acceptance Models (Multinomial Logit, Machine/Deep Learning)

| Driver Behavioral Model                                        | Parameters                                                    |  |  |
|----------------------------------------------------------------|---------------------------------------------------------------|--|--|
| Adaptive Cruise Control (ACC)                                  | max . Accel/decel, desired time gap, speed                    |  |  |
| Cooperative Adaptive Cruise Control (CACC)                     | max . Accel/decel, desired time gap, speed                    |  |  |
| Intelligent Driver Model (IDM)                                 | desired speed/decel/time gap, jam<br>distance, max. accel     |  |  |
| MICroscopic Model for Simulation of Intelligent Cruise (MIXIC) | Accel., decel., speed, distance                               |  |  |
| Krauss Car Following Model                                     | accel., decel., sigma, vehicle length, max speed, min Gap     |  |  |
| Wiedemann 99 Car Following Model                               | Accel, decel. Speed, time gap                                 |  |  |
| Cellular Automata                                              | Max. speed, accel, decel., time headway                       |  |  |
| Gipps's Car Following Model                                    | Speed, max accel, severe braking, reaction time, wished speed |  |  |
| Gipps' s Lane changing model                                   | gap acceptance, distance zones, speed, max/min gap            |  |  |
| Bilateral multi-anticipation model                             | IDM+ distance, relative speed, trust, proximity rules         |  |  |
| Multi - agent cooparative traffic model                        | Physical Layer> communication layer<br>> trust                |  |  |

into the future" funded by European Commission

under the MG-3.3.2018: "Driver" behavior and

acceptance of connected, cooperative and

automated transport; Research and Innovation

Action (RIA).

#### www.L3Pilot.eu Twitter@\_L3Pilot\_ LinkedInL3Pilot



This project has received funding from the European Union's Horizon 2020

research and innovation programme under grant agreement No 723051.

Supported by the European Council for Automotive R&D.

Databas

