

Drakoulis Richardos, Bolovinou Anastasia, Drainakis Georgios, Amditis Angelos, Institute of Communication & Computer Systems (ICCS) Athens, Greece

Vehicle maneuver-based long-term trajectory prediction at intersection crossings

Identifying the trajectory of a vehicle during 4-leg intersection approaching, given its kinematics, map position & short-term maneuvering intention.

Highlights of the approach

HMM classifier that incorporates lane-level map information with past

+5.436e6 460

SUMMER

SCHOOL

2020

Fig. 1. Simulation experiment's points of interest for an observed vehicle (OV) crossing a

4-leg intersection by either driving straight ahead (LK), turning right (TR) or left (TL).

Trajectory fusion for long-term trajectory generation: A classical kinematic-based vehicle trajectory, accurate only in short-term and map-

agnostic, is fused with a long-term map-aware trajectory derived based

on the vehicle's maneuver classification and the associated target lane.

position and kinematics of the vehicle (Fig. 3).

Derivation of smooth long-term trajectory, given the targeted map

lanelet. Final predicted trajectory as a combination of the motion-based

and long-term trajectories.

Results

Maneuver classification evaluation window (Fig. 1) consists of the road

area between lines L1 and L0.

- **Experimental setup and results:** Quantitative experiments on simulation datasets of crossing tracks on a 4-leg intersection. Effective

and robust extension of the trajectory prediction horizon:

- Turn prediction horizon longer than 3 secs (average classification)
 - time at 3.67 for turning left and 3.07 seconds for turning right)
- Trajectory prediction horizon considerably extended (over 5 secs 0

ahead) based on the associated target lane information.

Methodology

Evaluation of HMM classifier's performance by the prediction horizon

length and the classifier's precision/recall rates.

Turning detection consistency & qualitative performance against TTI

Fig. 4. Average probability of left-turn (on the left) and of right-turn (on the right) intention

as the OV crosses the HMM evaluation window (L1-L0 area depicted in Fig. 1)

Trajectory prediction quantitative comparison using RMSE between the baseline and the CTRA/Fused trajectories.

Fig. 2. Proposed System Architecture

The system is divided into two main parts: the maneuver classification

and the trajectory prediction (Fig. 2).

Short and a long-term evaluation (Fig. 5).

Type of Trajectory and prediction evaluation window	TL	LK	TR
Short-range CTRA (3 points)	1.10	0.54	1.01
Short-range Fused (3 points)	0.51	0.32	0.53
Long-range CTRA (8 points)	1.86	1.18	2.54
Long-range Fused (8 points)	0.38	0.39	0.38

Fig. 5. Trajectory RMSE comparison

This project has received funding from the European Union's Horizon 2020

research and innovation programme under grant agreement No 723051.

Supported by the European Council for Automotive R&D.

